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Abstract

Toward the unified simulation of the large deformation of a rigid viscoelastic material (plate) and the convection of a
viscous fluid (mantle), an Eulerian scheme with a semi-Lagrangian method is developed. The scheme adopts the CIP-
CSLR method for advection terms of staggered grid system in three dimensions. The positive transported profile of a posi-
tive quantity is assured by flux corrections in the dimensional splitting method. The Jaumann co-rotational effect of the
stress tensor is also integrated into the semi-Lagrangian treatment. This co-rotated semi-Lagrangian method is combined
with an exponential time differencing method in the time development of the Maxwell constitutive model. The large time
step comparable to, or larger than, the Maxwell relaxation time is successfully realized. Validation tests are performed for
the three-dimensional Rayleigh–Taylor instability of a viscoelastic material with jump discontinuity of the mass density
and other material properties.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most important problems in geodynamics is how and why the plate tectonics occurs on the
Earth. The basic concept in the theory of plate tectonics is that the outer shell of the Earth is divided into
a number of thin rigid plates which are in relative motion with respect to one another (e.g. [1,2]). Plate tecton-
ics provides a general framework for understanding geophysical and/or geological phenomena observed at the
Earth’s surface, such as worldwide distribution of seismicity, volcanism and mountain building (e.g. [3]). As
revealed by space missions, plate tectonics is unique to the Earth: There is no direct evidence of the features
relevant to plate tectonics, such as extensive ridges or trench systems, on other terrestrial planets (e.g. [4]). The
fact that the plates are formed at mid-ocean ridges, move away from the ridges, and recirculate into the mantle
through trenches implies that the motion of surface plates is a part of the convection in the underlying mantle.
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Since a numerical modeling of mantle convection first arose [5,6], much effort has been devoted so far to the
reproduction of plate tectonics in the numerical models of mantle convection (see [7,8] for reviews).

Unfortunately, however, ordinary fluid-dynamical approaches to mantle convection simulations have not
been very successful in the reproduction of plate tectonics. The major difficulty comes from the difference in
the rheological characters between the plates and mantle. The motions in the mantle are well described by the
flow of viscous fluid whose viscosity is typically 1019–1021 Pa s [2,9]. On the other hand, the rheology needed to
describe a large deformation in the tectonic plates is highly non-linear. In particular, an elasticity is expected to
affect the deformation processes near the surface, where temperature is sufficiently low. It is therefore impor-
tant to develop numerical techniques that can deal with a flow and/or a large deformation of fluids with elastic
property, in order to step forward toward the plate-mantle simulation.

The key issue to the treatment of viscoelastic plate-like materials is a choice of numerical schemes for
advection equations. In order to advect physical quantities which may have sharp contrasts (such as stress
and viscosity), it is required to employ advection schemes with low numerical diffusion. Since low diffusive
Eulerian schemes generally employ high-order interpolated functions and have an unwanted oscillatory
behavior of a profile according to Godunov’s order barrier theorem [10,11], Eulerian approaches have
not been widely used in the numerical models of viscoelasticity [12]. Instead, some models use a Lagrangian
frame of reference, where the computational meshes are defined on the boundary of a physical contrast and
move with the material point [13–15]. In these models, a large deformation is handled by remeshing proce-
dures. On the other hand, particle-based semi-Lagrangian methods are employed by many applications [16–
19], where advection equations are solved in a Lagrangian manner by tracer particles which construct sub-
grid scale profiles, while other equations (e.g., the equation of motion) are solved on the Eulerian mesh via
remapping procedures. Hybrid method of particle-based remeshing procedures in a Lagrangian method is
also proposed [20].

In this paper we present a numerical algorithm for large deformation of viscoelastic fluid motions in a Eule-
rian frame of reference. Our method is based on the Conservative semi-Lagrangian advection scheme of Con-
strained Interpolation Profile (CIP) method with Rational function (CIP-CSLR), proposed by Yabe and
coworkers [21–29]. The CIP-CSLR is widely used in many fields to numerically solve advection problems
keeping the sharpness of the profile of the transported quantity without the oscillatory behavior. We have dis-
cussed how to use the CIP-CSLR method in staggered grid systems in three dimensions. A flux correction is
newly proposed to guarantee the non-negative distribution of a non-negative scalar, such as the mass density.
Compared with other flux correction schemes reported so far (e.g. [30,31]), our scheme is simple and, at the
same time, easy to implement. On the other hand, in order to enhance the applicability of the CIP-CSLR to
viscoelastic problems, we have improved a semi-Lagrangian treatment of the Jaumann co-rotational deriva-
tive of the stress tensor. The Jaumann co-rotational derivative is taken into account to satisfy the material
objectivity of the stress tensor in a finite deformation of a viscoelastic material.

In the next section, we explain a physical model for a Maxwell viscoelastic material. In Section 3, we intro-
duce the solution algorithms of semi-Lagrangian scheme for scalar and tensor variables, and the treatment of
the viscoelastic constitutive equation. Then in Section 4, we discuss results of several cases of the three-dimen-
sional Rayleigh–Taylor instability test. We summarize the results in Section 5.

2. Physical model

We consider a motion of incompressible fluid with Maxwell viscoelasticity in three-dimensional Cartesian
geometry ðx1 ¼ x; x2 ¼ y; x3 ¼ zÞ. Since a slowly creeping motion is assumed, both the non-linear and time-
derivative terms of velocity are ignored in the equation of motion. We solve the Stokes equation
� op
oxi
þ osij

oxj
þ fi ¼ 0; ði; j ¼ 1; 2; 3Þ ð1Þ
under the incompressible condition
ovi

oxi
¼ 0; ð2Þ
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where p is the pressure, vi and fi are the velocity and body force in ith direction, respectively. The deviatoric
stress tensor sij is given by the viscoelastic Maxwell constitutive equation
sij þ ks�ij ¼ 2gdij; ð3Þ

where g is the shear viscosity, k is the Maxwell relaxation time and dij is the stretching tensor defined by
dij ¼
1

2

ovi

oxj
þ ovj

oxi

� �
: ð4Þ
The term s�ij denotes the Jaumann co-rotational rate of the stress tensor, which is written by
s�ij ¼
osij

ot
þ vk

osij

oxk
� wikskj þ sikwkj; ð5Þ
with the spin tensor
wij ¼
1

2

ovi

oxj
� ovj

oxi

� �
: ð6Þ
The Jaumann rate is introduced to satisfy the principle of material objectivity during the deformation pro-
cesses. A transport of the fluid material is described by the conservative equation
oC
ot
¼ � oðviCÞ

oxi
¼ �vi

oC
oxi

; ð7Þ
where C is a property, for example density or viscosity, of the fluid.

3. Numerical scheme

3.1. semi-Lagrangian scheme for transport of variables

When one considers large deformation of a viscoelastic material that exhibits a sharp interface of rheolog-
ical properties, the numerical accuracy of advection terms is critically important. Since we construct an advec-
tion scheme for viscoelastic fluid by CIP-CSLR method proposed by Yabe et al. [25,26], we briefly introduce
the basic CIP-CSLR method [21–24], followed by the description of our treatment in three-dimensional stag-
gered grid coordinate.

3.1.1. CIP-CSLR method

A one-dimensional semi-Lagrangian scheme solves an advection equation of a variable f
of
ot
¼ �v

of
ox
; ð8Þ
separately from other (non-advective) terms. The CIP-CSL method solves Eq. (8) with conserving a spatial
integration value

R
f dx in a flux form. There are two variants of the CIP-CSL method, called CIP-CSL4

and CIP-CSL2. We focus on the CIP-CSL2 (hereafter denoted simply by CIP-CSL) in this paper. The defini-
tion of variables in one dimension is shown in Fig. 1, where fi and qiþ1

2
are a point value and cell integrated

value, respectively. In the CIP-CSL method, we take into account the integrals DiðxÞðxi�1 6 x 6 xiþ1Þ and qiþ1
2

as follows,
DiðxÞ ¼
Z x

xi

f ðxÞdx ffi
Z x

xi

F icellðxÞdx; qiþ1
2
¼
Z xiþ1

xi

F iþ1
2
ðxÞdx; ð9Þ
where icell ¼ iþ sgnðx� xiÞ=2, and the real profile f ðxÞ between the grid points is approximated by a piece-
wise profile F icellðxÞðxicell�1

2
6 x 6 xicellþ1

2
Þ. In contrast that F icellðxÞ is interpolated by a cubic polynomial (or a

rational function) in the original CIP (or RCIP) method [21,24], the cubic interpolation is applied to its inte-
gral DiðxÞ in the CIP-CSL method. Denoting DiðxÞ at nth time step by Dn

i ðxÞ, it satisfies the following four
conditions;



Fig. 1. Definition of variables in one-dimensional advection.
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Dn
i ðxiÞ ¼ 0; Dn

i ðxiupÞ ¼ isgqn
icell;

oDn
i ðxÞ
ox

����
x¼xi

¼ F n
icellðxiÞ ¼ f n

i ;
oDn

i ðxÞ
ox

����
x¼xiup

¼ F n
icellðxiupÞ ¼ f n

iup;
ð10Þ
where isg ¼ sgnðx� xiÞ; iup ¼ iþ isg. The time evolution of qn
iþ1

2
is given by
qnþ1
iþ1

2
¼ qn

iþ1
2
þ Dn

iþ1ðxiþ1 � viþ1DtÞ � Dn
i ðxi � viDtÞ; ð11Þ
which comes from the conservation of the total mass over the grid cell. The non-advective equations of Eqs.
(1) and (3) at nth time step are solved with the cell integrated value qn

iþ1
2

of fluid property. On the other hand,
the point value f nþ1

i is updated in ordinary semi-Lagrangian manner
f nþ1
i ¼ f �i �

oDn
i ðxi � viDtÞ

ox
; ð12Þ
in the mass transport of incompressible fluid.
The CIP-CSLR method is a variant of CIP-CSL method. Two types of the CIP-CSLR method are pro-

posed in Ref. [28], and here we employ the CSLR1 [26,28]. The CIP-CSLR adopts a modified rational func-
tions for the interpolation,
Dn
i ðxÞ ¼

aiðx� xiÞ þ biðx� xiÞ2 þ ciðx� xiÞ3

1þ biðx� xiÞ
; ð13Þ
so as to reduce a numerical oscillation of a profile. The coefficients of Eq. (13) are decided by (10) as follows:
ai ¼ f n
i ; ð14Þ

bi ¼
ð1þ biDxiÞð2Sicell � f n

iupÞ þ Sicell � 2f n
i

Dx
; ð15Þ

ci ¼
ð1þ biDxiÞðf n

iup � SicellÞ � Sicell þ f n
i

Dx2
; ð16Þ

bi ¼
jSicell � f n

i j þ �
jf n

iup � Sicellj þ �
� 1

" #
=Dx; ð17Þ
where Dx ¼ xiup � xi; Sicell ¼ qicell=jDxj, and a small positive value � is introduced to numerically avoid a diver-
gence of denominator when ðf n

iup � SicellÞ ¼ 0 [28,29].
If ðf n

iup � SicellÞðSicell � f n
i ÞP 0;Dn

i ðxÞ is expressed by the rational function with the coefficient ci ¼ 0, and
proved to preserve the monotones of profile in Ref. [24]. On the other hand, when
ðf n

iup � SicellÞðSicell � f n
i Þ < 0, the profile have a peak or valley in the grid cell, and is expressed by the function

(13) with the coefficient ci 6¼ 0 (when bi ¼ 0, the function is cubic polynomial). We note that an oscillatory
behavior can appear from such a peak or valley in the grid cell, and may break a physical requirement for
a transported quantity such as a positiveness of a scalar (e.g., viscosity or mass).
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3.1.2. Separation test in one dimension

For the purpose of understanding the oscillatory behavior of the case with ðf n
iup � SicellÞðSicell � f n

i Þ < 0, for
a moment, we forget the incompressibility and consider the simple one-dimensional advection problem. Fig. 2
illustrates the calculation setup in which a profile is divided into two pieces at i ¼ ib with jDxj ¼ 1:0 and
Dt ¼ 0:1. The velocity and initial profile of (qn

iþ1
2
; f n

i ) are given by
Table
Result

qcenter

1.0

0.5

0.25

0.125

0.0

The ce
vi ¼ �1:0; f 0
i ¼ 1:0; q0

iþ1
2
¼ 1:0 for i < ib;

vi ¼ 1:0; f 0
i ¼ 1:0; q0

iþ1
2
¼ 1:0 for i > ib;

vi ¼ 1:0; f 0
i ¼ 1:0; q0

iþ1
2
¼ qcenter for i ¼ ib:

ð18Þ
A valley profile with the depth of qcenter is initially placed at ibth grid cell. In Table 1, we show the result after
one time step advective calculation and the minimum value during 15 time steps calculation. It is found that
the interpolated function with ci 6¼ 0 at i ¼ ib starts to oscillate as deepen the initially given valley and pro-
duces the negative value state in the transport of positive defined value.

Such a problematic valley profile can be created, for example when a low density of the profile is locally
introduced by a physical model in non-advection term. Moreover, in the following subsections (Sections
3.1.3 and 3.1.4), we will show that the temporal step of our multi-dimensional advection procedure may pro-
duce a deeper valley than that in one-dimensional advection.

3.1.3. Fractional step technique for multi-dimensional staggered grid system

We perform the multi-dimensional calculation by following the study of [26], in which the one-dimensional
advective procedure is applied to every direction. For the simplicity, we explain our directional splitting
0

1

ib ib+1

icell(t=0)

icell(t=0.1)

icell(t=1.5)

fi(t=0)

fi(t=0.1)

fi(t=1.5)
r

r

r

Fig. 2. One-dimensional calculation setup in which profile is divided into two pieces at i ¼ ib.

1
of one-dimensional separation test

q1
ibþ1

2

Minimum value of q1–15
ibþ1

2

0.80 q14
ibþ1

2

¼ �5:82E� 3

0.33 q9
ibþ1

2

¼ �1:25E� 2

9.20E�2 q5
ibþ1

2

¼ �6:72E� 2

�2.60E�2 q4
ibþ1

2
¼ �0:128

�0.144 q3
ibþ1

2

¼ �0:210

ll integrated value of nth time step at bottom of the valley are given by qn
ibþ1

2

. Setup is shown in Fig. 2.
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Fig. 3. Cartesian staggered grid in two dimensions.
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procedure in two dimensions. The Cartesian staggered grid is employed (Fig. 3), in which fði;jÞ, rxðiþ1
2;jÞ

, ryði;jþ1
2Þ

and qðiþ1
2;jþ

1
2Þ

are defined as the point value, line integrated value and cell integrated value, respectively.
The procedure of two-dimensional advection is as follows:

– x direction
1st: advect the ðf n; rn

xÞ to ðf �; r�xÞ with the velocity v�xði;jÞ ¼ ðvxði;jþ1
2Þ
þ vxði;j�1

2Þ
Þ=2.

2nd: advect the ðrn
y ; q

nÞ to ðr�y ; q�Þ with the velocity v��
x i;jþ1

2ð Þ.

– y direction
3rd: advect the ðf �; r�yÞ to ðf nþ1; rnþ1

y Þ with the velocity v�yði;jÞ ¼ ðvyðiþ1
2;jÞ
þ vyði�1

2;jÞ
Þ=2.

4th: advect the ðr�x ; q�Þ to ðrnþ1
x ; qnþ1Þ with the velocity v��

y iþ1
2;jð Þ.

Analogously, the three-dimensional advection is implemented in the staggered grid system.
If we follow the original fractional step method of Ref. [26], the averaged velocities at cell interfaces
v��xði;jþ1
2Þ
¼ vave

xði;jþ1
2Þ
¼ ðv�xði;jÞ þ v�xði;jþ1ÞÞ=2;

v��yðiþ1
2;jÞ
¼ vave

yðiþ1
2;jÞ
¼ ðv�yði;jÞ þ v�yðiþ1;jÞÞ=2;

ð19Þ
are used in 2nd and 4th advection steps. However it is found that the averaged velocity diffuses the shear of the
original velocity (vxði;jþ1

2Þ
; vyðiþ1

2;jÞ
) defined on the staggered grid. Instead of (19), we employ the same velocity

(raw velocity) at cell interfaces as
v��xði;jþ1
2Þ
¼ vxði;jþ1

2Þ
; v��yðiþ1

2;jÞ
¼ vyðiþ1

2;jÞ
: ð20Þ
3.1.4. Separation test in two dimensions

For a comparison of two types of velocity of (19) and (20) in detail, we conduct a simple experiment of two
dimensional separation, illustrated in Fig. 4. A set of smooth profile
fði;jÞ ¼ 1:0; rxðiþ1
2;jÞ
¼ ryði;jþ1

2Þ
¼ 1:0; qðiþ1

2;jþ
1
2Þ
¼ 1:0; ð21Þ
is employed as an initial condition with jDxj ¼ 1:0, and a velocity on the staggered grid is given by
ðvxði;jþ1
2Þ
; vyðiþ1

2;jÞ
Þ ¼ ð�1:0; 1:0Þ for ðj > iÞ;

ðvxði;jþ1
2Þ
; vyðiþ1

2;jÞ
Þ ¼ ð�1:0;�1:0Þ for ði ¼ jÞ;

ðvxði;jþ1
2Þ
; vyðiþ1

2;jÞ
Þ ¼ ð1:0;�1:0Þ for ðj < iÞ;

ð22Þ
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Fig. 4. Two-dimensional calculation setup in which profile is divided into two pieces along x ¼ y.
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which tears the profile into two pieces along x ¼ y, and the calculation is done with a time step Dt ¼ 0:05. This
separation with the divergent of velocity in two dimensions is possible situation for a temporal step of three-
dimensional advection of incompressible fluid.

In the 1st step of directional splitting method, the velocities around the cell of the separation (i ¼ j) are
Fig. 5.

cell int
v�xði;iÞ ¼ 0; v�xðiþ1;iÞ ¼ 1:0; v�xði;iþ1Þ ¼ �1:0; v�xðiþ1;iþ1Þ ¼ 0; ð23Þ
and the advection in the 2nd step is done by the averaged velocity
v��xði;iþ1
2Þ
¼ vave

xði;iþ1
2Þ
¼ �0:5; v��xðiþ1;iþ1

2Þ
¼ vave

xðiþ1;iþ1
2Þ
¼ 0:5; ð24Þ
or raw velocity
v��xði;iþ1
2Þ
¼ vxði;iþ1

2Þ
¼ �1:0; v��xðiþ1;iþ1

2Þ
¼ vxðiþ1;iþ1

2Þ
¼ 1:0: ð25Þ
The velocity in y direction for the 3rd and 4th advection steps are also obtained in the same manner.
Fig. 5 provides the differences in the time development of the cell integrated value qiþ1

2;iþ
1
2

by a choice of the
velocity. It is shown that the decrease of the cell value with the averaged velocity (blue triangle) is slower than
0 20 40

0

1

time step

averaged velocity

raw velocity

div correction

analytic

flux correction

Time evolutions of the cell integrated value at separation point qn
iþ1

2;iþ
1
2

in advection test of Fig. 4. Result of ‘‘analytic” means that

egrated value is reduced by constant flux (i.e. qnþ1
iþ1

2;iþ
1
2

� qn
iþ1

2;iþ
1
2
¼ 0:2).
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that with the raw velocity (black circle), because the averaged velocity at cell interface (i.e. jv��x j ¼ jvave
x j ¼ 0:5)

is smaller than raw velocity (i.e. jv��x j ¼ jvxj ¼ 1:0). This indicates that an edge profile is diffused by using the
averaged velocity, whereas our advection with raw velocity can captures the clear separation.

In Table 2, we summarize the minimum cell integrated values during the 40 time steps calculation. It is
shown that a negative value by the averaged velocity method keeps in the same order as one-dimensional case
(Table 1): by contrast the negative profile by raw velocity is in one order bigger than that by averaged velocity
or one-dimensional advection. Because of the large velocity at the cell interface at the trench, the raw velocity
method forms a deeper valley than that by the averaged velocity and produces larger negative value profiles.

These results indicate that the low diffusiveness of our multi-dimensional treatment with raw velocity not
only leads to the advantage in getting the sharp edges of profile, but also have the fear of producing an
unwanted negative profile.

The above oscillatory behavior is improved by a non-advective treatment for the temporal velocity diver-
gence, which is introduced, instead of (12), by
Table
Summ

Averag

Raw v

Diverg

Minim
f nþ1
i ¼ f �i � f �i

ov
ox

����
x¼xi

dt ¼ f �i 1� viþ1 � vi�1

xiþ1 � xi�1

� �
dt

� �
: ð26Þ
The result with the correction of (26) and the raw velocity is also given in Fig. 5 (red opened circle) and Table
2. However even the divergent treatment can not perfectly prevent the negative oscillatory behavior.

3.1.5. Flux correction scheme for non-negative profile
We propose a remedy for the breaking of the positiveness of a transported quantity by the CIP-CSLR. A

careful observation of Eq. (11) suggests that an advection phase can yield the (unphysical) negative qn
iþ1

2
either

(i) at the downstream cell when the incoming mass flow is negative owing to the oscillation of the profile, or (ii)
at the upstream cell when the amount of outgoing flow is too large. In order to avoid these two possibilities
and to realize more precise propagation of non-negative values, we propose the following two kinds of flux
corrections. The first one is an explicit cut-off correction (hereafter denoted by ‘‘negative-cut” correction)
given by
Dn
i ðxi � viDtÞ ¼ isg Max½isgDn

i ðxi � viDtÞ; 0�;
F n

icellðxi � viDtÞ ¼Max½F n
icellðxi � viDtÞ; 0�:

�
ð27Þ
The second correction is a diffusive-type (hereafter denoted by ‘‘diffuse-flow” correction) given by
Dn
i ðxi � viDtÞ ¼ isg Min½isgDn

i ðxi � viDtÞ; acq
n
icell�; ð28Þ
where ac is a dimensionless constant, or switching parameter. The negative-cut corrections in Eq. (27) simply
prohibit the unphysical negative flux and value at the grid point. The diffuse-flow correction in Eq. (28) in-
vokes an artificial diffusion of the numerical overshoot in the cell, thus preventing the flow from depriving
too much mass from the grid cell. The switching parameter ac is chosen to be the maximum value that guar-
antees the positiveness of the cell integrated value qnþ1 P 0 in (28). In one-dimensional case, ac ¼ 0:5 is a rea-
sonable choice, since the cell integrated value qi�1

2
in the next step is assured to be non-negative even if the

profile in a cell is drawn by a pair of outgoing flows on the both sides of the cell boundary.
Our diffuse-flow correction is applied not only to the profile of ðf n

iup � SicellÞðSicell � f n
i Þ < 0 which may pro-

duce the unwanted oscillatory behavior, but also to the oscillationless profile of ðf n
iup � SicellÞðSicell � f n

i ÞP 0.
2
ary of minimum value in two-dimensional separation test

Minimum value of q1�40
ðiþ1

2;iþ1
2Þ

ed velocity q35
ðiþ1

2;iþ1
2Þ
¼ �7:11E� 3

elocity q12
ðiþ1

2;iþ1
2Þ
¼ �4:75E� 2

ent velocity treatment with raw velocity q15
ðiþ1

2;iþ1
2Þ
¼ �1:47E� 2

um cell integrated value qn
ðibþ1

2;ibþ1
2Þ

presented in Fig. 5.
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One may think that our method breaks the low diffusive character of the interpolation by the rational func-
tion. However we can retain the low diffusiveness of CIP-CSLR profile, if the CFL number is a sufficiently
small (6 0:2, for example, and details are given in Appendix A).

The result of the separation test in Fig. 5 shows that our flux correction scheme (green line) successfully
propagate the non-negative profile without losing the good characters of the CIP-CSLR advection. Our cor-
rective scheme is a kind of flux correction method [30,31] arranged for the CIP-CSLR in the application to
slowly moving material.

3.2. Co-rotated semi-Lagrangian method for stress tensors

In our scheme, not only the scalar viscosity but also the deviatoric stress tensor, which are defined on the
Cartesian staggered grid [32], are transported by the semi-Lagrangian scheme. The Jaumann co-rotational rate
of the stress tensor, Eq. (5), is split into two steps in a semi-Lagrangian way; the advectional step
os�ij
ot
¼ �vk

osij

oxk
; ð29Þ
and the co-rotational step
os��ij
ot
¼ �xiks

�
kj þ s�ikxkj: ð30Þ
The advection step of Eq. (29) is integrated by the standard semi-Lagrangian technique.
The numerical error of the co-rotational step of Eq. (30) is not negligible when it is explicitly integrated in

time by, for example,
s��ij ¼ s�ij þ Dtð�wiks
�
kj þ s�ikwkjÞ: ð31Þ
We have found that the numerical error can be reduced when the co-rotational step of Eq. (30) is integrated
after rewriting it into the form of the rotation of the tensor components (see Appendix B):
s��ij ¼ Rnis
�
nmRmj ¼ RTs�R; ð32Þ
where R is the rotational matrix defined by
R ¼ ewDt ¼
X1
m¼0

1

m!
ðwDtÞm: ð33Þ
In the actual calculations, R is replaced with Rn, by truncating the infinite series of the right-hand side of
Eq. (33) up to m ¼ n.

In order to demonstrate the accuracy of our semi-Lagrangian treatment for the advection and co-rotation,
we perform a one-dimensional circular propagation test (Fig. 6) for two-dimensional stress components
(sxx; sxy) by the Jaumann co-rotational term of Eq. (5) with a constant angular velocity X. In this test, an initial
square shape profile of sxx is advected by Eq. (29) along the azimuthal direction h, and mixed (rotated) with the
profile of sxy by Eq. (30). We employ either the RCIP [23] or first-order upwind method for the advection. The
co-rotational effects are evaluated either by Eq. (33) with a third order rotational matrix R3 or by a difference
Fig. 6. Schematic picture of one-dimensional propagation test of two-dimensional stress tensor in Fig. 5.
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form where the rotational effect is calculated by Eq. (31). We avoid implicit method here, since they lead to
practically unfeasible formulations in three-dimensional problems by additional mixed tensor terms. The
matrix for the discretized Stokes equation is too complicated to invert.

Fig. 7 shows the mixed states of the propagated tensor components (sxx; sxy) on the h axis. We can see that
the transport by the RCIP (red and blue curves) results in lower diffusive profile than that by the upwind
method (green curve). It is also shown that the rotation by Eq. (33) with the third order rotation matrix
(red curve) is very accurate even for a rather large time step Dt. The rotation by the difference form by Eq.
(31) (blue curve), in contrast, shows the discretized error which depends on the choice of a time step Dt.
The RCIP combined with the third order rotation matrix preserves the high transport accuracy of the tensor
components.

We incorporate the semi-Lagrangian procedure not only in the flow advection, but also in the Jaumann co-
rotational effect by making use of the matrix form of Eq. (32). This technique, ‘‘Co-rotated semi-Lagrangian”
method, can be used with any kind of semi-Lagrangian scheme. In this paper, we will employ the CIP-CSLR,
and, hereafter we will call our method as ‘‘CIP-CSLR-CS”.

3.3. Integration form of viscoelastic stress by Maxwell constitutive equation

After the stress tensor s is advected and co-rotated by the CIP-CSLR-CS, the constitutive equation (3)
reads
Fig. 7.
and sxy

named
osij

ot
¼ � 1

k
sij þ

2g
k

dij: ð34Þ
The problem now is to integrate Eq. (34) with the time step as large as possible. Here we adopt an exponential
time differencing (ETD) method (e.g. [33]), in which the stretching tensor dij is approximated as constant over
a time increment Dt, namely
Z

Dt
dijdt ¼ Dtdij: ð35Þ
The assumption (35) enables us to perform the analytical integration of (34) [14];
snþ1
ij ¼ s��ij e

�Dt
k þ 2g 1� e

�Dt
k

� 	
dnþ1

ij ; ð36Þ
0 2 4 6

–1

0

1

RCIP+3rd order rotation
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upwind+difference form

RCIP+difference form
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t=0 t=130dt

Results of one-dimensional circular Jaumann co-rotational advection of square profiles of two-dimensional tensor components (sxx

) under uniform angular velocity field X of CFL number XDt=Dh=0.5 with Dh ¼ 2p=150. Initial distribution of sxx is given by profile
‘‘analytic (t ¼ 0)”, while that of sxy is zero. Distributions of sxx and sxy after advection of 130 times steps are shown.
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where s��ij is the stress tensor after the co-rotational advection phase. The first term of the right-hand side of
(36) is the relaxation term of a stored stress with the Maxwell relaxation time k, and the second term is asso-
ciated with the time-dependent softening of a material and the build-up of a stress by stretching. We note that
this method allows us to take large Dt compared with k as far as dij is constant during Dt.

In order to confirm the validity of (36) for large Dt, we perform calculations of a shear thinning test as illus-
trated in Fig. 8. The Maxwell constitutive model in a two-dimensional plane is adopted [34]. We employ a
constant shearing rate of dxy ¼ 0:05 with a time step Dt ¼ 1:5, which is larger than the Maxwell relaxation time
k ¼ 1. A time evolution of deviatoric stress tensor sxy is obtained by solving (5) and (34). We consider the
co-rotation of (30) by the procedure of (32) with a tenth order matrix R10. We neglect the advection term
of Eq. (29).

Fig. 9 shows the temporal evolution of effective viscosity meff ¼ sxy

2dxy
, whose asymptotic limit (t!1) is ana-

lytically given by
Fig. 9.
k ¼ 1:0
meffðt!1Þ ¼
g

1þ ð2kdxyÞ2
¼ 0:990; ð37Þ
owing to the Jaumann co-rotational effect. We numerically integrate Eq. (34) by three different methods; the
ETD method of (36), an implicit method
0

top

bottom

y

x

Fig. 8. Schematic picture of shear thinning test of Fig. 6. Velocity ðvx; vyÞ is given by ð0:1� y; 0Þ, and therefore dxy ¼ 0:05.
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Temporal evolutions of effective viscosity meff during shear thinning test of co-rotational Maxwell viscoelastic fluid with g ¼ 1:0,
and dxy ¼ 0:05. Plotted are results obtained by different schemes and time step Dt.
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snþ1
ij ¼ s��ij

k
kþ Dt

þ 2
gDt

kþ Dt
dnþ1

ij ; ð38Þ
and an explicit method
snþ1
ij ¼ s��ij 1� Dt

k

� �
þ 2g

Dt
k

dnþ1
ij : ð39Þ
For the comparison, the result of the explicit method with small Dt ¼ 0:01	 k is also given as the reference
solution (solid curve). From Fig. 9, we can see that the three methods of the time integration of (34) result in
different temporal evolutions of meff with a large Dt ¼ 1:5, although all of the methods tend to attain the same
correct asymptotic state (t!1). The explicit method (square) of Eq. (39) with the large time step shows an
incorrect oscillatory behavior. The integration by the implicit method (triangle) by Eq. (38), on the other hand,
does not oscillate even for the large Dt but underestimates meff . In contrast, the ETD method (circle) by (36)
accurately follow the reference solution even when the large Dt is used. From this comparison we conclude
that the ETD method successfully reproduces the correct viscoelastic behavior both for transient and asymp-
totic states, as long as the assumption (35) holds.

3.4. Solution of Stokes equation

By inserting Eq. (36) into (1), we obtain the equation for the force balance at new time step (nþ 1) as
� op
oxi
þ o

oxj
ð2geffdijÞ þ feff ;i ¼ 0; ð40Þ
where the effective viscosity geff and effective body force feff;i in ith direction are given by
geff ¼ g 1� e
�Dt
k

� 	
; f eff ;i ¼

o

oxj
s��ij e

�Dt
k

� 	
þ fi; ð41Þ
respectively. The form of Eq. (40) indicates that the viscoelastic fluid is described by a viscous fluid model with
slight modifications of the viscosity and external force over a time increment Dt.

We solve the force balance Eq. (40) for the velocity v and pressure p at a new time, together with the con-
tinuity equation (2). The elliptic differential equation for v and p are solved by a multigrid method using a
smoothing algorithm named ‘‘ACuTE” [35]. The ACuTE method is an extension of pseudo-compressibility
method originally designed for a steady-state flow of incompressible and viscous fluid, and is proved to be
suitable for convection problems with strong spatial variation of viscosity as is required in the mantle convec-
tion simulations. The details of the algorithm can be found in [36].
4. Rayleigh–Taylor instability test

4.1. Description of numerical test

We perform a three-dimensional Rayleigh–Taylor instability test, in order to demonstrate the applicability
of our schemes to actual large deformation problems of a viscoelastic fluid. The initial setup is shown in
Fig. 10(a) A viscoelastic fluid with the viscosity gupper, with Maxwell relaxation time kupper and with density
mupper is initially confined in the upper half of a three-dimensional rectangular box. The lower half of the
box is filled with a purely viscous fluid (called ‘‘air”) with small viscosity glower and density mlower. The size
of the box is 0:5� 0:5� 1, and the z-axis is in the vertical direction pointing upward. The body force of
(1) by the gravity is written by fi ¼ �dijmg, where dij is the Kronecker’s d symbol. A free-slip boundary con-
dition is applied along the side walls.

Non-dimensionalization of equation is done with x�i ¼ xi=H , t� ¼ t=ðgupper=ðDmgHÞÞ, m� ¼ ðm� mlowerÞ=Dm,
g� ¼ g=gupper, p� ¼ p=ðDmgHÞ and s�ij ¼ sij=ðDmgHÞ. Here H is the height of the box and Dm ¼ mupper � mlower.
The force balance (1) and Maxwell constitutive equation (3) in non-dimensional form are rewritten, on drop-
ping the asterisk, by



Fig. 10. Snapshots of Rayleigh–Taylor instability test in three-dimensional rectangular box with aspect ratio 0:5ðxÞ � 0:5ðyÞ � 1:0ðzÞ and
grid resolution of 64� 64� 128. Shown by this volume rendering visualization is distribution of viscosity at time (a) t ¼ 0, (b) t ¼ 100 and
(c) t ¼ 150. Map of color and transparency are given in (d).
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� op
oxi
þ osij

oxj
� mdi;3 ¼ 0; sij þ Des�ij ¼ 2gdij; ð42Þ
where De ¼ DmgHk=gupper is the dimensionless Deborah number, which is the ratio of the time scales of the
stress relaxation to that of the evolution of entire system [20]. The viscosity contrast between the upper
and lower layer is given by glower=gupper ¼ 10�3. Here a color function UðxÞ is introduced to distinguish the vis-
coelastic fluid and air in Eq. (42), and is initially given by
U0ðxÞ ¼
1 in upper viscoelastic fluid;

0 in air:

�
ð43Þ
A transport of the color function by the CIP-CSLR method represents a motion of the viscoelastic fluid and
air. The non-dimensional density mn, viscosity gn and Deborah number Den at nth time step in Eq. (42) are
simply defined by
mnðxÞ ¼ UnðxÞ; gnðxÞ ¼ ð1� UnðxÞÞglower=gupper þ UnðxÞ; ð44Þ
DenðrÞ ¼ De0U

nðxÞ; ð45Þ
where De0 ¼ DmgHkupper=gupper. Similarly, the deviatoric stress tensor sij is also transposed by the CIP-CSLR-
CS method. The stress free condition s0

ij ¼ 0 is initially employed, and the components (i.e. q; Sxy ; rx; . . . ; f ) of
sij are updated in the non-advection term by (36). By using the ACuTE method in Section 3.4, we solve the
force balance of (42) between the viscoelastic fluid and air, represented by the CIP-CSLR profile.

A profile of the interface between the two fluids is initially perturbed with an amplitude of 0.005 and hor-
izontal wave numbers ðkx ¼ 4p; ky ¼ 4pÞ, which is obtained by the advection calculation for 20 time steps with
Dt ¼ 1:0 by the velocity ðvx; vy ; vzÞ ¼ ð0; 0;�2:5� 10�4 cosð4pxÞ cosð4pyÞÞ, where the origin ðx; y; zÞ ¼ ð0; 0; 0Þ
is defined at the center of the box. It must be emphasized that the amplitude of perturbation (0.005) of the
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initial profile is comparable to the grid size resolution (Dz ¼ 1=128 ’ 0:007 for the typical grid size
64� 64� 128 of this paper), which implies that a quantitative treatment of this instability needs numerical
schemes which can handle the profile of the fluid interface with a spatial resolution smaller than the grid size.

We present in Fig. 10(b) and (c) the snapshots of the distribution of the viscoelastic fluid at t ¼ 100 and at
t ¼ 150, respectively. The figures show that the calculation by our semi-Lagrangian scheme successfully cap-
tures the sharp boundary of the material qualitatively. In what follows, we validate our methods by quanti-
tative comparisons with the semi-analytical solution of this instability [13]. In order to make a numerical
estimate of an instability amplitude, we employed a particle tracer which was initially placed at the center
of the fluid interface. The instability amplitude is determined by the displacement of the particle from its initial
position.

4.2. Impact of CIP-CSLR in Viscous deformation

We will first focus on the results of the case with a purely viscous fluid (De ¼ 0), where our semi-Lagrangian
scheme only transports a scalar variable (i.e. UðxÞ). The instability amplitude grows as ext in the linear stability
analysis of a viscous deformation.

In order to see the applicability of our scheme combined with the CIP-CSLR to the present calculation,
Table 3 provides the comparison of growth rates x by various resolutions and advection procedures in the
calculation. The results of our CIP-CSLR treatment, with the raw velocity of (20) and flux corrections of
(28), are in good agreement with theoretical one, even in the lowest resolution case of 32� 32� 64.

For the purpose of showing the effect of a conservation of fluid mass on this problem, we also present the
result with (non-conservative) RCIP advection scheme. Although both of semi-Lagrangian schemes (RCIP
and CIP-CSLR) can capture a sharp surface of the profile like Fig. 10, a quantitative comparison of x shows
that the result with the RCIP scheme deviates from the theoretical estimate. Since the growth of the Rayleigh–
Taylor instability during the very initial stage is strongly sensitive to the mass distribution of a sub-grid scale, a
loss or gain of a fluid mass in RCIP spoils the accuracy of the results. In contrast, the mass conservation of
CIP-CSLR method largely contributes to the good accuracy of our method.

We also show the results by changing the process of CIP-CSLR in Table 3, so as to elucidate how our CIP-
CSLR advection by the raw velocity with the flux correction works.

When we compare the results of two velocity settings for the staggered grid system (i.e. raw velocity and
averaged velocity), the growth rate by the raw velocity shows better agreement with the analytic one. This
is because the averaged velocity method have the diffusiveness discussed in Section 3.1.4.

On the other hand, if we turn off the flux corrections of (27) and (28), a negligible value of the negative
profile is obtained in the beginning of this calculation (e.g., Umin � �10�32 at t ¼ 5), and the growth rate by
the raw velocity is almost the same with that of our method. This indicates that our flux correction scheme
does not change the solution, if the normal CIP-CSLR works well without unwanted negative profile. In other
words, when we solve the problems under the proper deformation and physical model, which do not cause a
deep valley in a sub-grid profile, our flux correction method is not necessary.

However, after the long time calculation over the time range of above linear stability analysis, a separation
of deep valley with negative value is induced by the force balance without the flux correction as is shown in
Table 3
Comparison of growth rates x of Rayleigh–Taylor instability test with De ¼ 0

Calculation method Mesh size x

Semi-analytic 2:81� 10�2

RCIP 32� 32� 64 1:60� 10�2

CIP-CSLR

By raw velocity with flux corrections 128� 128� 256 2:771� 10�2

By raw velocity with flux corrections 64� 64� 128 2:767� 10�2

By raw velocity with flux corrections 32� 32� 64 2:74� 10�2

By raw velocity without flux corrections 32� 32� 64 2:74� 10�2

By averaged velocity without flux corrections 32� 32� 64 2:67� 10�2

Value of x are calculated by fitting evolution of instability amplitude from time t = 1–5.
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Fig. 11: there are the negative value spots represented by the white isosurface. Our flux correction corrects the
profiles of these negative regions.

In our target plate-mantle simulation, such a deviation of deep valley may occur in the temporal advection
step in the complex flows, or in a physical modeling of material (e.g., production of plate, brittle breaking and
phase changes), which will be employed as non-advection terms. Our flux correction method is reasonable
method of dealing with these problems, because it guarantees the positiveness of a profile, whatever the reason
for making valley profile is, without losing the low diffusiveness of CIP-CSLR.

4.3. Growth by viscoelastic deformation

Now we compare temporal evolutions of instability amplitude calculated for two cases with Deborah num-
bers De ¼ 0:05 and 2.5 in Fig. 12. For the case with De ¼ 2:5, the temporal evolution of instability exhibits
two stages. In the first stage (elastic mode), the amplitude increases very rapidly owing to the effect of an elastic
softening. (The behavior of this elastic mode will be discussed in detail in the next subsection.) In the second
stage of the deformation (viscous mode), where the viscous deformation is dominant, the instability grows at
an almost constant rate. The deformation mechanism changes with time from the elastic mode to the viscous
ones due to the time evolution of a viscoelastic stress by Eq. (36). On the other hand, in the case of De ¼ 0:05
where the elastic effect is negligible, the first stage of the elastic mode almost vanishes. The temporal evolution
of instability is thus quite similar to that obtained for the case with purely viscous deformation.

We calculated the growth rate x of the instability during the viscous mode. In Table 4, we compare the
values of x obtained by our simulation with those from the theoretical estimates by [13]. Our results are in
good agreement with the theoretical estimates and successfully reproduce the dependence of x on De. The
instability of viscous mode grows faster for a larger De.

4.4. Instantaneous growth by elastic deformation

Here we analyze the first stage of the elastic deformation. Fig. 13 shows the behavior of the elastic defor-
mation mode in detail: The temporal evolution of instability for De ¼ 2:5 in the very early stage. At the begin-
ning of the deformation, the effective viscosity of Eq. (41) becomes very small owing to the elasticity, and the
Fig. 11. Top view of Rayleigh–Taylor instability calculation at t ¼ 230 with grid resolution of 32� 32� 64. CIP-CSLR with raw velocity
without flux corrections is employed as advection method. Distribution of viscosity is shown in the same way as Fig. 10 with velocity
arrows. In addition, negative value profile at U ¼ �0:001 is represented by white isosurface. Minimum value of this profile is
Umin ¼ �0:018.
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Fig. 12. Temporal evolutions of instability amplitude of three-dimensional Rayleigh–Taylor instability for viscous fluid for viscoelastic
fluid with Deborah number De ¼ 0:05 and De ¼ 2:5. Grid resolutions is 64� 64� 128.

Table 4
Comparison of growth rates x obtained by present numerical tests and those from semi-analytic study

De ¼ 0:05 De ¼ 2:5

x of our result 2:78� 10�2 3:26� 10�2

x of semi-analytic result 2:82� 10�2 3:27� 10�2

Value of x are calculated by fitting evolution of instability amplitude from time t = 1–5, shown in Fig. 12.
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Fig. 13. Same as Fig. 12 but for viscoelastic fluid with Deborah number De ¼ 2:5 during very early stage (t 6 0:05) calculated by grid
resolutions of 64� 64� 128 and 128� 128� 256.
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viscoelastic fluid in the upper layer is extremely softened and free from an internal resistance by the viscoelastic
stress. In the elastic mode, therefore, a viscous resistance of the soft fluid in the lower layer must be balanced
with a gravity force acting on the upper layer through the interface. In other words, the interface deforms rap-
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Fig. 14. Same as Fig. 12 but for viscoelastic fluid with Deborah number De ¼ 10:0 calculated with (labeled ‘‘jaumann”) or without
(‘‘small”) Jaumann co-rotational effect. Grid resolutions is 64� 64� 128. Vertical axis is in linear scale in this plot.
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idly so that the viscous resistance of the lower layer with the small viscosity satisfies the force balance. This is
the reason why the instability amplitude develops very fast in the elastic mode. This elastic mode continues
until the viscoelastic stress (36) is accumulated enough to make the internal resistance of the upper layer be
balanced with the gravity force, indicating that the transition of deformation mode to the viscous mode takes
place.

The instability amplitude calculated by our methods with a finer grid resolution of 128� 128� 256 (red
circle) is in good agreement with the theoretical estimate. On the other hand, the solution with the grid size
of 64� 64� 128 (green opened circle) shows a slight disagreement with the theoretical value. We have found
that this error is related to a numerical oscillation of the deviatoric stress tensor caused by the rapid deforma-
tion of the viscoelastic fluid. A further improvement would be required in order to resolve an instantaneous
elastic response with better accuracy.

4.5. Effects of Jaumann co-rotational term

In order to quantify the importance of the Jaumann co-rotational effect, we also perform calculations where
the co-rotational term (30) is turned off. It is found that the results are quite similar to those with the co-rota-
tional term for both De ¼ 0:05 and 2.5 cases. It is because the effect of an elasticity is too small in the present
numerical experiment. Indeed, as shown in Fig. 14, the co-rotational effect is very minor in resisting the defor-
mation even for the case with De ¼ 10:0 where the effect of the elasticity is significantly emphasized.

5. Summary

We have developed a simulation scheme for a finite deformation of viscoelastic fluids in the Eulerian frame
of reference. In order to capture sharp surfaces in the material, we apply the CIP-CSLR method as a semi-
Lagrangian scheme. The fractional step technique is employed to advect three-dimensional scalar and tensor
profiles on the staggered grid. In addition, the flux correction method is proposed for advecting a slowly mov-
ing non-negative profile. Our scheme automatically detects the appearance of a numerical oscillation near the
zero level, and applies the diffusive or clipping corrections to the numerical error. As for the Maxwell consti-
tutive equation, we propose ‘‘Co-rotated semi-Lagrangian” method, in which the Jaumann co-rotational term
are solved by the semi-Lagrangian method with rotation of the tensor components by the rotation matrix. The
residual time integration of the Maxwell viscoelasticity is done by the ETD method. The combination of these
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techniques enables us to integrate the Maxwell constitutive equation with large time step Dt, keeping high
numerical accuracy as long as the velocity does not change significantly over the time increment Dt.

Generally, the computer code based on Eulerian methods are easier in the optimization of the vectoriza-
tion/parallelization than (semi-) Lagrangian treatments with (remapping) remeshing procedures. Since our
scheme is based on the fully Eulerian procedure of the CIP-CSLR, our code can attain high performance
on massively vector/parallel super computers.

We have applied our method to the three-dimensional model via the spatial dimensional splitting method of
the CIP-CSLR. We have performed a three-dimensional simulation of viscoelastic Rayleigh–Taylor instability
and confirmed the qualitative and quantitative validity of our scheme.

In order to fully address the question how the elasticity affects the plate tectonics, it is inevitable to incor-
porate non-linear deformation mechanisms other than elasticity. The results of our numerical experiments are
consistent with the earlier finding of the viscoelastic studies that the elastic property with the rotational term
does not play an essential role in the actual gravitational deformation processes of the plates (De 6 0:1)
[13,20], although it may cause several side-effects [15,18,34]. However, even though the elastic deformation
itself is negligible, the elastically-stored stress (with the advection and rotation) may influence the non-linear
deformation mechanisms of the plates, because some of them strongly depend on the stress state of a material
(e.g., triggering brittle behavior). In order to clarify such roles of the viscoelastic stress in rheological proper-
ties of the plates, we need further investigation of modeling non-linear rheologies.
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Appendix A. Diffuse-flow correction in CIP-CSLR method

In order to understand the details of the diffuse-flow correction in Section 3.1.5, we discuss what kind of
rational function profile (13) is corrected by (28). In the following we restrict ourselves to the advection of
a profile around x ¼ xi under a uniform flow v > 0 and assume fiup¼i�1 6 Si�1

2
¼ qi�1

2
=jDxj 6 fi, where the spa-

tial integral Dn
i can be calculated by (28) with the values of the downstream fi and upstream fi�1 sides and the

cell integrated value qi�1
2
. We define a dimensionless parameter a as
a ¼ jD
n
i ðxi � CFLDxÞj

qn
i�1

2

¼ ð/
2
1/2 � 1ÞðCFLÞ2 þ /1ð1� /1/2ÞðCFLÞ

1� /1/2 þ CFLð/1 þ /1/2 � 2Þ ; ðA:1Þ
where CFL ¼ vDt=Dx, /1 ¼ f n
i =Si�1

2
, and /2 ¼ f n

i�1=f n
i . The diffuse-flow correction Eq. (28), becomes active

when a P ac.
In Fig. A.1, we plot a contour map of the nondimensional parameter a on the /1–/2 plane. Fig. A.1(a)

shows the case for CFL ¼ 0:2. When ac ¼ 0:5 (black curve) that the inequality /1 P 3:4 is the necessary con-
dition for a P ac. Since Si�1

2
is the averaged value, /1 ¼ fi=Si�1

2
P 3:4 means that the value at downstream side

fi is relatively large compared with the mean profile. It is also clear in Fig. A.1(a) that the condition a P ac

leads to small value of /2 ¼ fi�1=fi < 0:08: The value of the upstream side fi�1 must be sufficiently smaller than
that of the downstream side fi. These constraints indicate that the diffuse-flow correction of (28) becomes
active only when the profile have a very steep gradient in the cell.

Fig. A.1(b) shows that the contour of CFL number for fixed a ¼ ac ¼ 0:5. It is obvious that our criterion of
a P ac strongly depends on the CFL number of the calculation. With increasing the CFL number, the flux
corrected region (a P ac) on the /1–/2 plane becomes large, and at last for the case of CFL ¼ 0:5 (light blue
curve) any profile of /2 6 1=/1 (i.e., fi�1 6 S) is corrected by (28). This indicates that the diffuse-flow correc-
tion of Eq. (28) with a large CFL number works not only on an oscillation part, but also on a non-oscillation
part of the profile in a diffusive manner. For the purpose of preserving a good sharpness of the CIP-CSLR
profile, we should employ a small CFL number in our correction scheme (< 0:2, for example).
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Fig. A.1. Plots as function of /1 and /2 of (a) nondimensional parameter a for fixed CFL number of 0.2, and (b) CFL for fixed
a ¼ ac ¼ 0:5. See text for definitions of variables.
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An additional care must be taken when applying the above technique to multi-dimensional calculations.
For two- or three-dimensional calculations, a smaller ac should be preferred (e.g., ac ¼ 1=6 for three-dimen-
sional cases) due to the increase of the cell faces. As shown in Fig. A.1(a), however, it is difficult to preserve the
shape with small ac because it causes strong diffusive effects. The calculations with a smaller ac need a smaller
CFL number to maintain the shape preservation of a profile (see also Fig. A.1(b)). Instead, we perform the
multi-dimensional calculation by a directional splitting method in Section 3.1.3, in which the one-dimensional
advection with ac ¼ 0:5 can be applied to every direction. This technique successfully reproduces a low diffu-
sive shape of solution even for multi-dimensional simulations with the same CFL number as one-dimensional
case.

Appendix B. Implement of Jaumann co-rotational derivative

In order to incorporate the Jaumann co-rotational term into a semi-Lagrangian method, we derive the
expression of the Jaumann rate, i.e., the rate of tensor from a view of observer who rotates with the material
point.

The difference in the views from different observers can be represented by the change of the base vector g
from time t to c as
gi½c� ¼ Rt½c�gi½t�; ðB:1Þ

where Rt½c� ¼ gi½c� 
 gi½t� is the rotation tensor. With this notation, a tensor s at time c is defined as
s ¼ ~sijg
i½c� 
 gj½c� ðB:2Þ

¼ Rt½c�~sijR
T
t ½c�gi½t� 
 gj½t� ðB:3Þ

¼ sijg
i½t� 
 gj½t�: ðB:4Þ
The Jaumann co-rotational rate of s is the material derivative of ~sij, defined with the fixed base vector gi½t�. The
material derivative of Eqs. B.2, B.3 and B.4 with time c is
_s ¼ ð~sijg
i½c� 
 gj½c�Þ� ðB:5Þ

¼ ðRt½c�~sijR
T
t ½c�Þ

�
gi½t� 
 gj½t� ðB:6Þ

¼ _sijg
i½t� 
 gj½t�; ðB:7Þ
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here dot denotes the material derivative. By taking the limit of c! t in Eq. (B.6), the usual Jaumann co-rota-
tional form is derived
s�¼ _~sijg
i½t� 
 gj½t� ¼ ð _sij � wikskj þ sikwkjÞgi½t� 
 gj½t� ¼ _s� w � sþ s � w; ðB:8Þ
where w ¼ limc!t
_Rt½c� is spin tensor.

On the other hand, Jaumann co-rotational derivative can be written as an advection equation from (B.3)
and (B.4), as follows
s�¼ðRT
t ½c�sijRt½c�Þ�gi½t� 
 gj½t�: ðB:9Þ
Eq. (B.9) is the advection form of the tensor F ¼ RT
t ½c� � sij � Rt½c�, and can be solved in the advective procedure

of a semi-Lagrangian scheme as follows
F tðxÞ ¼ F t�Dtðx� vDtÞ ðB:10Þ
¼ RT

t�Dt½t� � sij½t � Dt�ðx� vDtÞ � Rt�Dt½t�; ðB:11Þ
where the rotation tensor Rt�Dt½t� is obtained by
Rt�Dt½t� ¼ ewDt; ðB:12Þ

under the assumption that ov

ot ¼ 0.
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